Serial crystallographic analysis of protein isomorphous replacement data from a mixture of native and derivative microcrystals.
نویسندگان
چکیده
A post-experimental identification/purification procedure similar to that described in Zhang et al. [(2015), IUCrJ, 2, 322-326] has been proposed for use in the treatment of multiphase protein serial crystallography (SX) diffraction snapshots. As a proof of concept, the procedure was tested using theoretical serial femtosecond crystallography (SFX) data from a mixture containing native and derivatized crystals of a protein. Two known proteins were taken as examples. Multiphase diffraction snapshots were subjected to two rounds of indexing using the program CrystFEL [White et al. (2012). J. Appl. Cryst. 45, 335-341]. In the first round, an ab initio indexing was performed to derive a set of approximate primitive unit-cell parameters, which are roughly the average of those from the native protein and the derivative. These parameters were then used in a second round of indexing as input to CrystFEL. The results were then used to separate the diffraction snapshots into two subsets corresponding to the native and the derivative. For each test sample, integration of the two subsets of snapshots separately led to two sets of three-dimensional diffraction intensities, one belonging to the native and the other to the derivative. Based on these two sets of intensities, a conventional single isomorphous replacement (SIR) procedure solved the structure easily.
منابع مشابه
Enantiomorphous phase doublets from isomorphous replacement or anomalous scattering
A direct-methods procedure has been proposed for separating the phase doublet resulting from the use of either isomorphous replacement or anomalous scattering techniques. The phase doublet is expressed as ~#u= ~h±lA~.l. Formulae combining the structure-factor relationships with the phase-doublet information are given. Problems concerning the practical applications are also discussed. A test cal...
متن کاملIntegration of Direct Methods With Macromolecular Crystallographic Techniques
The role of direct methods in macromolecular crystallography is discussed. The common belief that such methods will still remain marginal is rejected. Different sectors are analyzed. A direct procedure for phasing reflections when diffraction data of one isomorphous derivative are available is briefly described. The applications to experimental data of some test structures succeeded, and sugges...
متن کاملA pipeline for structure determination of in vivo-grown crystals using in cellulo diffraction
While structure determination from micrometre-sized crystals used to represent a challenge, serial X-ray crystallography on microfocus beamlines at synchrotron and free-electron laser facilities greatly facilitates this process today for microcrystals and nanocrystals. In addition to typical microcrystals of purified recombinant protein, these advances have enabled the analysis of microcrystals...
متن کاملX-ray crystallographic determination of the structure of the influenza C virus haemagglutinin-esterase-fusion glycoprotein.
The structure of the haemagglutinin-esterase-fusion (HEF) glycoprotein from influenza C virus has been determined to 3.2 A resolution by X-ray crystallography. A synthetic mercury-containing esterase inhibitor and receptor analogue, 9-acetamidosialic acid alpha-thiomethylmercuryglycoside, was designed as the single isomorphous heavy-atom derivative. The asymmetric unit of one crystal form (form...
متن کاملAn isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) holds great potential for structure determination of challenging proteins that are not amenable to producing large well diffracting crystals. Efficient de novo phasing methods are highly demanding and as such most SFX structures have been determined by molecular replacement methods. Here we employed single isomorph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 71 Pt 12 شماره
صفحات -
تاریخ انتشار 2015